Molar Mass Of Ni Dmg 2
To balance a chemical equation, enter an equation of a chemical reaction and press the Balance button. The balanced equation will appear above. Nickel(II) Arsenate Ni3(AsO4)2 Molar Mass, Molecular Weight. Nickel(II) Hydroxide Ni(OH)2 Molar Mass, Molecular Weight. Question: What is the molar mass of Ni(NO 3) 2? Nickel(II) Nitrate. Nickel is a transition metal with a +2 oxidation state. This means an atom of nickel loses two electrons. Oct 16, 2014 We did a gravimetric analysis lab and I have masses for the DMG-Ni complexes that we recovered but I need to find the percent nickel in each sample. Relevant Equations: I believe you take the mass of the DMG-Ni complex sample and multiply that by the mass ratio of Ni2+ over the FW of DMG.
Names | |
---|---|
IUPAC name | |
Other names
| |
Identifiers | |
| |
ChEMBL | |
ChemSpider |
|
ECHA InfoCard | 100.002.201 |
EC Number | |
PubChemCID | |
RTECS number |
|
UNII | |
CompTox Dashboard(EPA) | |
| |
| |
Properties | |
C4H8N2O2 | |
Molar mass | 116.120 g·mol−1 |
Appearance | White/Off White Powder |
Density | 1.37 g/cm3 |
Melting point | 240 to 241 °C (464 to 466 °F; 513 to 514 K) |
Boiling point | decomposes |
low | |
Structure | |
0 | |
Hazards | |
Main hazards | Toxic, Skin/Eye Irritant |
Safety data sheet | External MSDS |
GHS pictograms | |
GHS Signal word | Danger |
H228, H301 | |
P210, P240, P241, P264, P270, P280, P301+310, P321, P330, P370+378, P405, P501 | |
NFPA 704 (fire diamond) | |
Related compounds | |
Hydroxylamine salicylaldoxime | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references |
Dimethylglyoxime is a chemical compound described by the formula CH3C(NOH)C(NOH)CH3. Its abbreviation is dmgH2 for neutral form, and dmgH for anionic form, where H stands for hydrogen. This colourless solid is the dioxime derivative of the diketone butane-2,3-dione (also known as diacetyl). DmgH2 is used in the analysis of palladium or nickel. Its coordination complexes are of theoretical interest as models for enzymes and as catalysts. Many related ligands can be prepared from other diketones, e.g. benzil.
Preparation[edit]
Dimethylglyoxime can be prepared from butanone first by reaction with ethyl nitrite to give biacetyl monoxime. The second oxime is installed using sodium hydroxylamine monosulfonate:[1]
Complexes[edit]
Dimethylglyoxime is used to detect and quantify nickel, which forms the bright red complex nickel bis(dimethylglyoximate) (Ni(dmgH)2). The reaction was discovered by L. A. Chugaev in 1905.[2]
Cobalt complexes have also received much attention. In chloro(pyridine)cobaloxime[3] the macrocycle [dmgH]22− mimics the macrocyclic ligand found in vitamin B12.
References[edit]
- ^Semon, W. L.; Damerell, V. R. (1930). 'Dimethylglyoxime'. Organic Syntheses. 10: 22. doi:10.15227/orgsyn.010.0022.CS1 maint: multiple names: authors list (link)
- ^Lev Tschugaeff (1905). 'Über ein neues, empfindliches Reagens auf Nickel'. Berichte der Deutschen Chemischen Gesellschaft. 38 (3): 2520–2522. doi:10.1002/cber.19050380317.
- ^Girolami, G. S.; Rauchfuss, T.B.; Angelici, R. J. (1999). Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual (3rd ed.). pp. 213–215.
Names | |
---|---|
IUPAC name | |
Other names Nickel hydroxide, Theophrastite | |
Identifiers | |
| |
ChemSpider | |
ECHA InfoCard | 100.031.813 |
EC Number |
|
RTECS number | |
CompTox Dashboard(EPA) | |
| |
| |
Properties | |
Ni(OH)2 | |
Molar mass | 92.724 g/mol (anhydrous) 110.72 g/mol (monohydrate) |
Appearance | green crystals |
Density | 4.10 g/cm3 |
Melting point | 230 °C (446 °F; 503 K) (anhydrous, decomposes) |
0.13 g/L | |
+4500.0·10−6 cm3/mol | |
Structure[1] | |
hexagonal, hP3 | |
P3m1, No. 164 | |
α = 90°, β = 90°, γ = 120° | |
Thermochemistry | |
79 J·mol−1·K−1[2] | |
Std enthalpy of formation(ΔfH⦵298) | −538 kJ·mol−1[2] |
Hazards | |
Safety data sheet | External SDS |
GHS pictograms | [3] |
GHS Signal word | Danger[3] |
H302, H332, H315, H334, H317, H341, H350, H360, H372[3] | |
P260, P284, P201, P280, P405, P501[3] | |
Lethal dose or concentration (LD, LC): | |
1515 mg/kg (oral, rat) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references |
Nickel(II) hydroxide is the inorganic compound with the formula Ni(OH)2. It is an apple-green solid that dissolves with decomposition in ammonia and amines and is attacked by acids. It is electroactive, being converted to the Ni(III) oxy-hydroxide, leading to widespread applications in rechargeable batteries.[4]
Properties[edit]
Nickel(II) hydroxide has two well-characterized polymorphs, α and β. The α structure consists of Ni(OH)2 layers with intercalated anions or water.[5][6] The β form adopts a hexagonal close-packed structure of Ni2+ and OH− ions.[5][6] In the presence of water, the α polymorph typically recrystallizes to the β form.[5][7] In addition to the α and β polymorphs, several γ nickel hydroxides have been described, distinguished by crystal structures with much larger inter-sheet distances.[5]
The mineral form of Ni(OH)2, theophrastite, was first identified in the Vermion region of northern Greece, in 1980. It is found naturally as a translucent emerald-green crystal formed in thin sheets near the boundaries of idocrase or chlorite crystals.[8] A nickel-magnesium variant of the mineral, (Ni,Mg)(OH)2 had been previously discovered at Hagdale on the island of Unst in Scotland.[9]
High dmg hunter build wow classic. WoW Classic PvP Talent Builds for Hunters Lightning Reflexes/Scatter Shot 0/21/30 Hunter Talent Build This spec is solid in PvP. More towards the late stages of the game but even early on it can prove to be quite powerful. The thing is that Lightning Reflexes only gets better the more agility you can stack. These talents provide some good CC, survival, and damage. Trueshot Aura builds are the heart of most Hunter builds in WoW Classic, as the tree provides a number of bonuses useful in all situations, including increased range, damage, reduced mana costs, and a group-wide buff. Survival: A rugger tracker who favors using animal venom, explosives and traps as deadly weapons.
Molar Mass Of Ni(dmg)2
Reactions[edit]
Nickel(II) hydroxide is frequently used in electrical car batteries.[6] Specifically, Ni(OH)2 readily oxidizes to nickel oxyhydroxide, NiOOH, in combination with a reduction reaction, often of a metal hydride (reaction 1 and 2).[10]
Reaction 1 Ni(OH)2 + OH− → NiO(OH) + H2O + e−
Reaction 2 M + H2O + e− → MH + OH−
Molar Mass Of Ni Dmg 2
Net Reaction (in H2O)Ni(OH)2 + M → NiOOH + MH
Of the two polymorphs, α-Ni(OH)2 has a higher theoretical capacity and thus is generally considered to be preferable in electrochemical applications. However, it transforms to β-Ni(OH)2 in alkaline solutions, leading to many investigations into the possibility of stabilized α-Ni(OH)2 electrodes for industrial applications.[7]
Synthesis[edit]
The synthesis entails treating aqueous solutions of nickel(II) salts with potassium hydroxide.[11]
Toxicity[edit]
The Ni2+ ion is a known carcinogen. Toxicity and related safety concerns have driven research into increasing the energy density of Ni(OH)2 electrodes, such as the addition of calcium or cobalt hydroxides.[4]
See also[edit]
References[edit]
- ^Enoki, Toshiaki; Tsujikawa, Ikuji (1975). 'Magnetic Behaviours of a Random Magnet, NipMg(1-p)(OH2)'. Journal of the Physical Society of Japan. 39 (2): 317. doi:10.1143/JPSJ.39.317.
- ^ abZumdahl, Steven S. (2009). Chemical Principles 6th Ed. Houghton Mifflin Company. p. A22. ISBN978-0-618-94690-7.
- ^ abcd'Nickel Hydroxide'. American Elements. Retrieved 2018-08-30.
- ^ abChen, J.; Bradhurst, D.H.; Dou, S.X.; Liu, H.K. (1999). 'Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries'. J. Electrochem. Soc. 146 (10): 3606–3612. doi:10.1149/1.1392522.
- ^ abcdOliva, P.; Leonardi, J.; Laurent, J.F. (1982). 'Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides'. Journal of Power Sources. 8 (2): 229–255. doi:10.1016/0378-7753(82)80057-8.
- ^ abcJeevanandam, P.; Koltypin, Y.; Gedanken, A. (2001). 'Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method'. Nano Letters. 1 (5): 263–266. doi:10.1021/nl010003p.
- ^ abShukla, A.K.; Kumar, V.G.; Munichandriah, N. (1994). 'Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells'. J. Electrochem. Soc. 141 (11): 2956–2959. doi:10.1149/1.2059264.
- ^Marcopoulos, T.; Economou, M. (1980). 'Theophrastite, Ni(OH)2, a new mineral from northern Greece'(PDF). American Mineralogist. 66: 1020–1021.
- ^Livingston, A.; Bish, D. L. (1982). 'On the new mineral theophrastite, a nickel hydroxide, from Unst, Shetland, Scotland'(PDF). Mineralogical Magazine. 46 (338): 1. doi:10.1180/minmag.1982.046.338.01.
- ^Ovshinsky, S.R.; Fetcenko, M.A.; Ross, J. (1993). 'A nickel metal hydride battery for electric vehicles'. Science. 260 (5105): 176–181. doi:10.1126/science.260.5105.176. PMID17807176.
- ^Glemser, O. (1963) 'Nickel(II) Hydroxide' in 'Handbook of Preparative Inorganic Chemistry, 2nd ed. G. Brauer (ed.), Academic Press, NY. Vol. 1. p. 1549.